Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Small molecule-dependent genetic selection in stochastic nanodroplets as a means of detecting protein-ligand interactions on a large scale.

Identifieur interne : 001A79 ( Main/Exploration ); précédent : 001A78; suivant : 001A80

Small molecule-dependent genetic selection in stochastic nanodroplets as a means of detecting protein-ligand interactions on a large scale.

Auteurs : A. Borchardt [États-Unis] ; S D Liberles ; S R Biggar ; G R Crabtree ; S L Schreiber

Source :

RBID : pubmed:9427663

Descripteurs français

English descriptors

Abstract

BACKGROUND

Understanding the cellular role of a protein often requires a means of altering its function, most commonly by mutating the gene encoding the protein. Alternatively, protein function can be altered directly using a small molecule that binds to the protein, but no general method exists for the systematic discovery of small molecule ligands. Split-pool synthesis provides a means of synthesizing vast numbers of small molecules. Synthetic chemists will soon be able to synthesize natural product-like substances by this method, so compatible screening methods that detect the activity of minute quantities of molecules among many inactive ones will be in demand.

RESULTS

We describe two advances towards achieving the above goals. First, a technique is described that uses a simple spray gun to create 5000-8000 droplets randomly, each having a volume of 50-200 nanoliters. The individual 'nanodroplets' contain a controlled number of cells and many also contain individual synthesis beads. As small molecules can be photochemically released from the beads in a time-dependent manner, the concentration of ligands that the cells are exposed to can be controlled. The spatial segregation of nanodroplets prevents the mixing of compounds from other beads so the effects of each molecule can be assayed individually. Second, a small molecule-dependent genetic selection involving engineered budding yeast cells was used to detect intracellular protein-ligand interactions in nanodroplets.

CONCLUSIONS

The technique described here should facilitate the discovery of new cell-permeable ligands, especially when combined with a positive selection assay that detects intracellular binding of small molecules to proteins. Using 'anchored combinatorial libraries', it may be possible to screen entire libraries of natural product-like molecules against the entire collection of proteins encoded within cDNA libraries in a single experiment.


DOI: 10.1016/s1074-5521(97)90304-5
PubMed: 9427663


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Small molecule-dependent genetic selection in stochastic nanodroplets as a means of detecting protein-ligand interactions on a large scale.</title>
<author>
<name sortKey="Borchardt, A" sort="Borchardt, A" uniqKey="Borchardt A" first="A" last="Borchardt">A. Borchardt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Liberles, S D" sort="Liberles, S D" uniqKey="Liberles S" first="S D" last="Liberles">S D Liberles</name>
</author>
<author>
<name sortKey="Biggar, S R" sort="Biggar, S R" uniqKey="Biggar S" first="S R" last="Biggar">S R Biggar</name>
</author>
<author>
<name sortKey="Crabtree, G R" sort="Crabtree, G R" uniqKey="Crabtree G" first="G R" last="Crabtree">G R Crabtree</name>
</author>
<author>
<name sortKey="Schreiber, S L" sort="Schreiber, S L" uniqKey="Schreiber S" first="S L" last="Schreiber">S L Schreiber</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1997">1997</date>
<idno type="RBID">pubmed:9427663</idno>
<idno type="pmid">9427663</idno>
<idno type="doi">10.1016/s1074-5521(97)90304-5</idno>
<idno type="wicri:Area/Main/Corpus">001A78</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A78</idno>
<idno type="wicri:Area/Main/Curation">001A78</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A78</idno>
<idno type="wicri:Area/Main/Exploration">001A78</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Small molecule-dependent genetic selection in stochastic nanodroplets as a means of detecting protein-ligand interactions on a large scale.</title>
<author>
<name sortKey="Borchardt, A" sort="Borchardt, A" uniqKey="Borchardt A" first="A" last="Borchardt">A. Borchardt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Liberles, S D" sort="Liberles, S D" uniqKey="Liberles S" first="S D" last="Liberles">S D Liberles</name>
</author>
<author>
<name sortKey="Biggar, S R" sort="Biggar, S R" uniqKey="Biggar S" first="S R" last="Biggar">S R Biggar</name>
</author>
<author>
<name sortKey="Crabtree, G R" sort="Crabtree, G R" uniqKey="Crabtree G" first="G R" last="Crabtree">G R Crabtree</name>
</author>
<author>
<name sortKey="Schreiber, S L" sort="Schreiber, S L" uniqKey="Schreiber S" first="S L" last="Schreiber">S L Schreiber</name>
</author>
</analytic>
<series>
<title level="j">Chemistry & biology</title>
<idno type="ISSN">1074-5521</idno>
<imprint>
<date when="1997" type="published">1997</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antifungal Agents (chemistry)</term>
<term>Antifungal Agents (pharmacology)</term>
<term>Cell Membrane Permeability (MeSH)</term>
<term>Ligands (MeSH)</term>
<term>Molecular Weight (MeSH)</term>
<term>Polyenes (chemistry)</term>
<term>Polyenes (pharmacology)</term>
<term>Proteins (chemistry)</term>
<term>Proteins (genetics)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Sirolimus (MeSH)</term>
<term>Viscosity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antifongiques (composition chimique)</term>
<term>Antifongiques (pharmacologie)</term>
<term>Ligands (MeSH)</term>
<term>Masse moléculaire (MeSH)</term>
<term>Perméabilité des membranes cellulaires (MeSH)</term>
<term>Polyènes (composition chimique)</term>
<term>Polyènes (pharmacologie)</term>
<term>Protéines (composition chimique)</term>
<term>Protéines (génétique)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Sirolimus (MeSH)</term>
<term>Viscosité (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Antifungal Agents</term>
<term>Polyenes</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Polyenes</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Antifongiques</term>
<term>Polyènes</term>
<term>Protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antifongiques</term>
<term>Polyènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Membrane Permeability</term>
<term>Ligands</term>
<term>Molecular Weight</term>
<term>Sirolimus</term>
<term>Viscosity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Ligands</term>
<term>Masse moléculaire</term>
<term>Perméabilité des membranes cellulaires</term>
<term>Sirolimus</term>
<term>Viscosité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Understanding the cellular role of a protein often requires a means of altering its function, most commonly by mutating the gene encoding the protein. Alternatively, protein function can be altered directly using a small molecule that binds to the protein, but no general method exists for the systematic discovery of small molecule ligands. Split-pool synthesis provides a means of synthesizing vast numbers of small molecules. Synthetic chemists will soon be able to synthesize natural product-like substances by this method, so compatible screening methods that detect the activity of minute quantities of molecules among many inactive ones will be in demand.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We describe two advances towards achieving the above goals. First, a technique is described that uses a simple spray gun to create 5000-8000 droplets randomly, each having a volume of 50-200 nanoliters. The individual 'nanodroplets' contain a controlled number of cells and many also contain individual synthesis beads. As small molecules can be photochemically released from the beads in a time-dependent manner, the concentration of ligands that the cells are exposed to can be controlled. The spatial segregation of nanodroplets prevents the mixing of compounds from other beads so the effects of each molecule can be assayed individually. Second, a small molecule-dependent genetic selection involving engineered budding yeast cells was used to detect intracellular protein-ligand interactions in nanodroplets.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The technique described here should facilitate the discovery of new cell-permeable ligands, especially when combined with a positive selection assay that detects intracellular binding of small molecules to proteins. Using 'anchored combinatorial libraries', it may be possible to screen entire libraries of natural product-like molecules against the entire collection of proteins encoded within cDNA libraries in a single experiment.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9427663</PMID>
<DateCompleted>
<Year>1998</Year>
<Month>03</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1074-5521</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<Issue>12</Issue>
<PubDate>
<Year>1997</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Chemistry & biology</Title>
<ISOAbbreviation>Chem Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Small molecule-dependent genetic selection in stochastic nanodroplets as a means of detecting protein-ligand interactions on a large scale.</ArticleTitle>
<Pagination>
<MedlinePgn>961-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Understanding the cellular role of a protein often requires a means of altering its function, most commonly by mutating the gene encoding the protein. Alternatively, protein function can be altered directly using a small molecule that binds to the protein, but no general method exists for the systematic discovery of small molecule ligands. Split-pool synthesis provides a means of synthesizing vast numbers of small molecules. Synthetic chemists will soon be able to synthesize natural product-like substances by this method, so compatible screening methods that detect the activity of minute quantities of molecules among many inactive ones will be in demand.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We describe two advances towards achieving the above goals. First, a technique is described that uses a simple spray gun to create 5000-8000 droplets randomly, each having a volume of 50-200 nanoliters. The individual 'nanodroplets' contain a controlled number of cells and many also contain individual synthesis beads. As small molecules can be photochemically released from the beads in a time-dependent manner, the concentration of ligands that the cells are exposed to can be controlled. The spatial segregation of nanodroplets prevents the mixing of compounds from other beads so the effects of each molecule can be assayed individually. Second, a small molecule-dependent genetic selection involving engineered budding yeast cells was used to detect intracellular protein-ligand interactions in nanodroplets.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The technique described here should facilitate the discovery of new cell-permeable ligands, especially when combined with a positive selection assay that detects intracellular binding of small molecules to proteins. Using 'anchored combinatorial libraries', it may be possible to screen entire libraries of natural product-like molecules against the entire collection of proteins encoded within cDNA libraries in a single experiment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Borchardt</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liberles</LastName>
<ForeName>S D</ForeName>
<Initials>SD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Biggar</LastName>
<ForeName>S R</ForeName>
<Initials>SR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Crabtree</LastName>
<ForeName>G R</ForeName>
<Initials>GR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schreiber</LastName>
<ForeName>S L</ForeName>
<Initials>SL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Chem Biol</MedlineTA>
<NlmUniqueID>9500160</NlmUniqueID>
<ISSNLinking>1074-5521</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011090">Polyenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002463" MajorTopicYN="N">Cell Membrane Permeability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011090" MajorTopicYN="N">Polyenes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014783" MajorTopicYN="N">Viscosity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1998</Year>
<Month>3</Month>
<Day>7</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1998</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1998</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9427663</ArticleId>
<ArticleId IdType="pii">S1074-5521(97)90304-5</ArticleId>
<ArticleId IdType="doi">10.1016/s1074-5521(97)90304-5</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
<settlement>
<li>Cambridge (Massachusetts)</li>
</settlement>
<orgName>
<li>Université Harvard</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Biggar, S R" sort="Biggar, S R" uniqKey="Biggar S" first="S R" last="Biggar">S R Biggar</name>
<name sortKey="Crabtree, G R" sort="Crabtree, G R" uniqKey="Crabtree G" first="G R" last="Crabtree">G R Crabtree</name>
<name sortKey="Liberles, S D" sort="Liberles, S D" uniqKey="Liberles S" first="S D" last="Liberles">S D Liberles</name>
<name sortKey="Schreiber, S L" sort="Schreiber, S L" uniqKey="Schreiber S" first="S L" last="Schreiber">S L Schreiber</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Borchardt, A" sort="Borchardt, A" uniqKey="Borchardt A" first="A" last="Borchardt">A. Borchardt</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A79 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A79 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:9427663
   |texte=   Small molecule-dependent genetic selection in stochastic nanodroplets as a means of detecting protein-ligand interactions on a large scale.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:9427663" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020